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Example with the T100 mGT (100 kWel)
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Basic aspects
The WISHeR project

Project
• PRIN2022: n. 2022YSR9LM
• Title: Water-collection and Improvement of Sustainability in the HVAC Retrofitting
• Duration: n.2 years
• Partners: UNIPV (Coordinator), UNIGE
• Objectives: definition of case studies, development of integration with HVAC systems, 

optimization, integration in smart grids with storage systems, integration with PCM 
systems, laboratory tests



Layout
Grid with AWG system
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AWA250

Nominal conditions
• Atmospheric conditions: 30°C e 70% relative humidity
• Water production: 2500 l/day
• Electrical consumption: 30 kW
• Air flow: 8000 m3/h
• Cooling fluid: R134a

Economic effectiveness demonstrated in previous studies
• Example in Dubai (EAU) - https://seas-sa.com/wp-content/uploads/2019/09/AWA-250-Case-Study.pdf

Grid with AWG system



AWA250
• Interpolations of performance maps (steady-state part)
• First order delay blocks (transient behaviour)
• Experimental validation with a laboratory heat pump

Component models

PV panels
• Power production from previous laboratory measurements
• Generation in the 9-16 hours
• PV system size: 1.1 kWp
• Maximum generation: 650 W

Water storage tank
• Integrator: SoC calculation from inlet/outlet mass balance
• Size: 2000 l



Optimization problem
• Cost minimization
• Two decision variables
• Constrained optimization tool 

Energy Management System

PV panels
• Considered for recalculation of electricity cost

Water storage tank
• Charging: electricity cost lower than the daily average and AWG active
• Discharging: electricity cost higher than the daily average
• Max SoC: 90%
• Min SoC: 10%



Real-time performance
Results

Costs:
• Water (rete): 2.0 €/m3

• Cooling energy: 45 €/MWh
• O&M: 10 €/MWh

-51.7%
-40.2%

Parametric analysis

+10%+5%-5%-10%

-126.4-82.0-31.8-17.4C. en. cost [%]

-42.3-47.3-57.3-62.6O&M cost [%]

-52.9-52.3-51.1-50.5PV gen. [%]
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Conclusions

• Importance of the EMS technology in smart grids.
• The WISHeR (PRIN2022).
• Development and validation of the component models (mainly the AWG).
• EMS development for variable cost minimization.
• Results for a 24-h simulation (EMS vs No EMS): -40.2% without the PVs.
• Results for a 24-h simulation (EMS vs No EMS): -51.7% with the PVs.

Future activities: integration with other components (e.g., storage based on PMCs), laboratory tests in
cyber-physical mode.
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